Overview |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magneticum Pathfinder aims to follow the formation of cosmological structures in a hitherto unaccomplished level of detail by performing a set of large scale and high resolution simulations, taking into account many physical processes to allow detailed comparison to a variety of multi-wavelength observational data. Such simulations need to incorporate a detailed description of various complex, non-gravitational, physical processes, which determine the evolution of the cosmic baryons and have an impact on their observational properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Simulations |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magneticum Pathfinder & Magneticum
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CosmologyUsing WMAP7 cosmology taken from Komatsu et al. 2010:
Physics included
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Multi Cosmology Runs of Box1a/mr
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Extra Runs |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dark Matter control simulationsWe performed dark matter only control runs for various boxes. To avoid a different sampling of the initial density fluctuations, all these runs were done using two dark matter particle species, e.g. by treating the gas particles as dark matter only particles. Available dark matter only simulations include Box0/mr, Box1a/mr, Box2b/hr, Box2/hr, Box3/hr, Box4/uhr and Box5/xhr. There are also some dark matter only simulations for some of the multi cosmology versions of Box1a/mr. The imprint of the baryonic physics on the mass function of haloes as covered by the simulation set can be seen in the figure at the right. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ANGUS (AustraliaN GADGET-3 early Universe Simulations)This project aims to study the role of feedback from supernovae and black holes in the evolution of the star formation rate function (SFRF) of high redshift (z ~ 4 - 7) galaxies and consists of a set of small, high resolution boxes. The picture on the right shows a explorational simulation of Box5/xhr at z=2.7.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MHD simulationsCurrently there are various simulations of Box3/hr as full MHD simulations available, including simulations combining cooling and star-formation with MHD. They are probing different scenarious for the origin of the magnetic field within the LSS. The picture on the left shows a slice through the simulation at z=1, showing the gas density (left panel) and the magnetic field distribution (right panel), as obtained from the magnetig field seeding from supernova events. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Post processing |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
On the fly post-processingSimilar to Saro et al. (2006), we compute the luminosities of our simulated galaxies on the fly using the stellar population synthesis model of Bruzual & Charlot (2007) in different spectral bands (u,V,G,r,i,z,Y,J,H,K,L,M) as well as their star-formation rate and HI content. Following Nuzza et. al. 2010 we also take dust attenuation into account when computing the observer frame luminosities. The attenuation is estimated from the radial dust profile, computed from the metal and HI profile of the galaxies.Data ManagementAll simulation outputs employ an algorithm which sorts the particles among the CPUs among a space filling curve and produces an auxiliary file which allows us to identify the sub-data volume elements of any stored property among all particle species associated to each element of the space filling curve used. Finally there is a super index build which allows us to identify the sub snapshots which belongs to the different parts of the space filing curve. This allows us to effectively collect all data associated to a given volume in space (defined by the elements of the space filling curve it occupies) with a minimum of reading overhead (see figure on the right). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||